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Simple Summary: The future of plant biology, particularly rapidly advancing precision horticulture 
and predictive breeding, will require the transformation of huge volumes of multi-omics data into 
structured information and valuable knowledge, representing a key challenge. This review aims to 
delve into the transformative potential of integrating multi-omics data and artificial intelligence (AI) 
for a more comprehensive, high-throughput approach to plant phenotyping in horticultural re-
search. We argue that the union of these advanced techniques can provide a robust analytical frame-
work that can handle the complexity of plant biology, thus surmounting the limitations of tradi-
tional phenotyping methods. Our discussion also acknowledges the technical and non-technical 
challenges associated with this integration, critically evaluating their advantages and limitations, 
proposing potential solutions, and outlining promising future prospects. 

Abstract: This review discusses the transformative potential of integrating multi-omics data and 
artificial intelligence (AI) in advancing horticultural research, specifically plant phenotyping. The 
traditional methods of plant phenotyping, while valuable, are limited in their ability to capture the 
complexity of plant biology. The advent of (meta-)genomics, (meta-)transcriptomics, proteomics, 
and metabolomics has provided an opportunity for a more comprehensive analysis. AI and machine 
learning (ML) techniques can effectively handle the complexity and volume of multi-omics data, 
providing meaningful interpretations and predictions. Reflecting the multidisciplinary nature of 
this area of research, in this review, readers will find a collection of state-of-the-art solutions that 
are key to the integration of multi-omics data and AI for phenotyping experiments in horticulture, 
including experimental design considerations with several technical and non-technical challenges, 
which are discussed along with potential solutions. The future prospects of this integration include 
precision horticulture, predictive breeding, improved disease and stress response management, 
sustainable crop management, and exploration of plant biodiversity. The integration of multi-omics 
and AI holds immense promise for revolutionizing horticultural research and applications, herald-
ing a new era in plant phenotyping. 
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1. Introduction 
1.1. Background of Horticulture and Plant Phenotyping 

Horticulture, one of the most integral sectors within the broader sphere of agricul-
ture, has played a pivotal role in human civilization. It has facilitated our transition from 
nomadic hunter–gatherers to settled agricultural societies. As a field, horticulture encom-
passes the science, technology, and art involved in the cultivation, propagation, pro-
cessing, and marketing of ornamental plants, flowers, fruits, vegetables, nuts, seeds, and 
herbs [1,2]. At the core of horticulture lies the concept of plant phenotyping, the compre-
hensive assessment of complex plant traits such as growth, development, tolerance, re-
sistance, architecture, physiology, ecology, and yield quality and quantity under a range 
of environmental conditions. The intricate relationship between a plant’s phenotype and 
its environment is modulated by its genotype, forming the basis for plant phenomics [3–
5]. 

Over the years, plant phenotyping has been paramount in assessing plant character-
istics, enabling the development of improved crop varieties, and paving the way for in-
creased agricultural and horticultural productivity and resilience. However, the tradi-
tional methods of plant phenotyping, often manual, time-consuming, and subject to hu-
man error, have been unable to keep pace with the rapid advancements in high-through-
put genotyping technologies [6,7]. The demand for food is expected to grow substantially 
in the next decades. To meet the challenges of this global growth in a context of climate 
change, a better understanding of genotype–phenotype relationships is crucial to improve 
production capacities. Plant research is witnessing an unprecedented revolution in the 
acquisition of various data such as phenotypic and multi-omic data, which generates ter-
abytes of data associated with the results of large-scale phenotypic experiments carried 
out in environments with different conditions. The disparity between genotyping and 
phenotyping capabilities has become a critical bottleneck in our quest to ensure global 
food security and sustainable agriculture. As such, the need for innovative and advanced 
plant phenotyping techniques has never been more pressing [8,9]. 

To address these challenges, we stand at the brink of integrating cutting-edge tech-
nologies such as multi-omics approaches and artificial intelligence into horticulture. By 
leveraging these technologies, we seek to establish a more holistic and nuanced under-
standing of plant biology. This, in turn, promises unprecedented insights into plant phe-
notypes and the ability to breed more resilient and productive crops [10–12]. 

In the following sections, we will delve into the significance of multi-omics and AI in 
the contemporary horticulture landscape and propose an integrated framework that har-
nesses these technologies for advanced plant phenotyping. 

1.2. Need for Advanced Techniques in Plant Phenotyping 
The last few decades have witnessed a significant shift in the realm of plant pheno-

typing, primarily driven by the advent of advanced high-throughput genotyping technol-
ogies. These technologies have enabled the generation of vast genomic datasets, prompt-
ing a newfound appreciation for the genetic complexity underpinning plant phenotypes 
[13,14]. However, this rapid proliferation of genotypic data has not been matched by com-
parable strides in phenotypic data acquisition, leading to a notable phenotyping bottle-
neck. This disparity has underscored the need for more advanced and high-throughput 
plant phenotyping techniques [15,16]. 

Traditional phenotyping methods are often labor-intensive, subjective, and suffer 
from low throughput, making it challenging to capture the dynamic nature of plant traits 
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across different growth stages and environmental conditions (Figure 1 and Table 1). Fur-
thermore, these methods generally focus on observable traits, overlooking subcellular 
processes and interactions that contribute significantly to the overall plant phenotype 
[6,7,17]. Consequently, it has become evident that the next frontier in plant phenotyping 
necessitates a paradigm shift towards more precise, objective, and high-throughput meth-
odologies. This shift should be equipped to capture the complexity and dynamics of plant 
phenotypes at different scales, from cellular processes to whole-plant traits, and under 
varying environmental conditions [18–20]. 

Advanced techniques such as imaging technologies, sensor-based measurements, 
and high-throughput screening platforms are increasingly being incorporated into plant 
phenotyping, paving the way towards more efficient and precise data collection (Figure 1 
and Table 1). However, these techniques invariably generate vast and complex datasets, 
necessitating robust data analysis strategies [21–23]. Multi-omics methodologies promise 
a holistic view of the plant system by integrating genomic, transcriptomic, proteomic, and 
metabolomic data, among others. Meanwhile, artificial intelligence and machine learning 
offer powerful tools for deciphering complex patterns within these large datasets, ena-
bling more insightful and predictive models of plant phenotypes [24–26]. Thus, the inte-
gration of these advanced techniques within plant phenotyping not only holds the poten-
tial to break the phenotyping bottleneck, but also promises to usher in a new era of preci-
sion horticulture. 

 
Figure 1. Overview of traditional and advanced phenotyping techniques. 
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Table 1. Comparison of traditional and advanced phenotyping methods. 

Method Description Advantages Limitations 

Traditional 
Phenotyping 

Traditional phenotyping in horti-
culture primarily relies on visual 
assessment and manual measure-
ments of plant traits, such as plant 
height, flower color, fruit size, and 
disease symptoms [5]. 

1. Simple and cost-effective 
[6]. 

1. Time-consuming and labor-inten-
sive [7]. 

2. Easy to conduct without 
requiring specialized train-
ing or tools [7]. 

2. Limited in scope and depth, typi-
cally only capturing superficial traits 
[6]. 

 3. Subjective, with potential for incon-
sistency and error [5]. 

Advanced Phe-
notyping 
(Multi-Omics) 

Advanced phenotyping involves 
comprehensive molecular profil-
ing of the plant, using techniques 
such as genomics, transcriptomics, 
proteomics, and metabolomics 
[26]. 

1. Provides in-depth under-
standing of plant biology at 
the molecular level [25]. 

1. Requires specialized equipment 
and training [27]. 

2. Can reveal information 
about complex traits and 
processes [27]. 

2. Data analysis can be complex, given
the volume and complexity of multi-
omics data [25]. 

Advanced Phe-
notyping 
(AI/ML) 

AI/ML-based phenotyping in-
volves the use of machine learning 
algorithms to analyze and inter-
pret complex plant data, such as 
images, spectral data, or multi-om-
ics data [10].  

1. Can handle large volumes 
of complex data [28]. 

1. Requires substantial computational 
resources and expertise [28].  

2. Provides objective and 
consistent analyses [29,30]. 

2. Model selection and interpretation 
can be challenging [29] . 

3. Can uncover patterns and 
relationships that are not ev-
ident to humans [30]. 

3. ‘Black box’ nature of some ML algo-
rithms can lead to transparency and 
trust issues [30]. 

1.3. Brief Overview of Multi-Omics and AI Techniques 
Multi-omics and artificial intelligence (AI) represent two technological advance-

ments that hold significant potential to revolutionize horticulture and plant phenotyping. 
These approaches, when combined, have the potential to offer unprecedented insights 
into the complexities of plant systems and enable the development of highly accurate and 
predictive models of plant phenotypes [27–29]. 

The term ‘multi-omics’ refers to the integrative study of various ‘omic’ disciplines, 
which individually focus on a particular biological system. These include genomics, tran-
scriptomics, proteomics, metabolomics, and others [30,31]. Each of these omics layers of-
fers a unique perspective on the functional components of a biological system. However, 
by considering these layers separately, the holistic picture of how these components in-
teract and contribute to the overall phenotype is lost. This is why multi-omics represents 
an advance [17,32]. Multi-omics approaches aim to integrate data from various omics lay-
ers to uncover the complex interactions and regulatory mechanisms that underlie the ob-
servable characteristics or phenotypes of an organism. In the context of plant phenotyp-
ing, multi-omics can provide comprehensive insights into the dynamic interplay between 
genetic makeup, environmental influence, and plant phenotype [33,34]. 

Artificial intelligence (AI) refers to the simulation of human intelligence processes by 
machines, especially computer systems. This involves learning (acquiring information 
and rules), reasoning (using rules to reach conclusions), and self-correction. Machine 
learning (ML), a subset of AI, involves the development of algorithms that allow comput-
ers to learn from and make decisions based on data [35,36]. 

In horticultural research, AI and ML techniques hold the potential to transform the 
analysis of large and complex multi-omics datasets. They can uncover hidden patterns 
within the data, generate new hypotheses, and predict future outcomes with high accu-
racy. Techniques such as deep learning, a subfield of ML that imitates the functioning of 
the human brain in processing data, are being increasingly employed to decipher the com-
plex patterns within multi-omics data [37–39]. The application of AI and ML in plant phe-
notyping can facilitate the identification of key features associated with important traits, 
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thus aiding in the development of improved plant varieties. When coupled with multi-
omics data, these techniques provide a powerful tool to comprehensively understand and 
accurately predict plant phenotypes [40,41]. 

In summary, the combination of multi-omics approaches and AI techniques repre-
sents a promising pathway to address the current limitations in plant phenotyping and 
heralds a new era in horticultural research. 

2. Advancements in Plant Phenotyping 
2.1. Traditional Methods of Plant Phenotyping in Horticulture 

Plant phenotyping has always been a cornerstone of horticultural research and breed-
ing programs. Traditionally, phenotypic data were obtained through manual measure-
ments and visual inspections, techniques that are rooted in centuries of agricultural prac-
tice [42]. 

These traditional phenotyping methods encompass a broad array of approaches, 
each of which focuses on a specific plant characteristic or trait. Here, we outline some of 
the most prevalent traditional phenotyping techniques: 
• Visual inspection: This is perhaps the most common and straightforward method of 

plant phenotyping. Researchers visually inspect plants for specific traits, such as 
color, shape, size, and disease symptoms. This method is cost-effective and straight-
forward but is also highly subjective and can lead to inconsistencies due to variability 
in human judgment [43]; 

• Manual measurements: A host of plant traits, such as plant height, leaf area, and fruit 
size are often measured manually using instruments such as rulers, calipers, or leaf 
area meters. While this method is more objective than visual inspection, it is time-
consuming, labor-intensive, and may cause physical damage to the plant, thereby 
limiting its applicability for large-scale studies [6]; 

• Destructive sampling: Certain plant traits, particularly those related to plant physi-
ology or internal structures, necessitate destructive sampling. This involves harvest-
ing parts or whole plants to carry out measurements. Examples include determining 
the dry weight, nutrient content, or internal fruit quality. Although this method can 
provide highly accurate measurements, it is not suitable for longitudinal studies as it 
prevents the further assessment of the same plant [4]; 

• Greenhouse and field trials: For assessing plant performance under different envi-
ronmental conditions or treatments, greenhouse or field trials are often conducted. 
These trials involve growing plants under controlled or real-world conditions, re-
spectively, and recording various phenotypic traits. Although valuable for assessing 
real-world plant performance, these trials can be resource-intensive and subject to 
environmental variability [44]. 
Despite their extensive usage, traditional plant phenotyping methods have several 

limitations, particularly in the context of large-scale studies and high-throughput screen-
ing. These constraints have necessitated the development of more advanced, efficient, and 
high-throughput phenotyping techniques, which are discussed in the next section. 

2.2. Limitations of Traditional Methods 
While traditional methods have played an indispensable role in our understanding 

of plant phenotypes, they are not without their limitations. As we move towards an era of 
large-scale genomics and high-throughput screening, these limitations are becoming in-
creasingly apparent: 
• Labor-intensive and time-consuming: One of the most significant drawbacks of tra-

ditional plant phenotyping methods is that they are often manual and therefore la-
bor-intensive and time-consuming. This makes them unsuitable for large-scale stud-
ies where thousands of plants may need to be phenotyped [45]; 
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• Subjectivity and inconsistencies: Methods such as visual inspection are subjective 
and can result in significant inconsistencies due to variability in human judgment. 
Furthermore, manual measurements are prone to errors, which can compromise the 
accuracy of the phenotypic data [46]; 

• Low throughput: Traditional phenotyping methods generally have a low through-
put, meaning that they can only phenotype a limited number of plants within a given 
timeframe. This is a significant constraint in modern horticultural research and 
breeding programs where large plant populations often need to be phenotyped 
[6,17]; 

• Destructive nature: Some traditional phenotyping methods, such as destructive sam-
pling, prevent the further assessment of the same plant and are therefore not suitable 
for longitudinal studies where the same plant needs to be assessed at different time 
points [4]; 

• Inability to capture subcellular processes: Traditional methods generally focus on ob-
servable traits and are unable to capture subcellular processes and interactions that 
significantly contribute to the overall plant phenotype [4,46]; 

• Environmental variability: Greenhouse and field trials are subject to environmental 
variability, which can introduce a significant amount of noise into the phenotypic 
data and complicate the interpretation of the results [43,47]. 
As such, there is an increasing recognition within the horticultural community of the 

need to overcome these limitations through the application of more advanced and high-
throughput plant phenotyping techniques. These techniques, combined with the power 
of multi-omics and AI, have the potential to revolutionize our understanding of plant phe-
notypes and facilitate the development of more resilient and productive crop varieties. 

2.3. Advancements and Their Potential 
The past decade has witnessed a surge in innovative plant phenotyping techniques 

that promise to address the limitations of traditional methods. These advancements lev-
erage cutting-edge technologies to enable more efficient, precise, and high-throughput 
phenotyping. Here, we outline some of these techniques and their potential impact on 
horticultural research: 
• High-throughput phenotyping platforms: High-throughput phenotyping (HTP) 

platforms, both in the greenhouse and field, employ automated systems to non-inva-
sively measure multiple plant traits simultaneously. These platforms utilize a combi-
nation of imaging technologies, sensor-based measurements, and robotics to pheno-
type large plant populations in a relatively short time. HTP platforms significantly 
reduce manual labor and improve the objectivity and consistency of phenotypic 
measurements [48,49]. 

• Imaging technologies: Innovations in imaging technologies have revolutionized 
plant phenotyping. These technologies provide non-invasive, objective, and high-res-
olution measurements of a wide range of plant traits. Techniques such as RGB imag-
ing, hyperspectral imaging, thermal imaging, 3D imaging, and fluorescence imaging 
can capture various aspects of plant physiology, morphology, and health. For exam-
ple, RGB imaging can be used to assess plant color and size, while hyperspectral im-
aging can provide insights into plant nutrient status and disease resistance [50,51]. 

• Sensor-based measurements: The advent of various sensor technologies has facili-
tated the capture of precise and continuous phenotypic data. These include sensors 
for measuring soil moisture, leaf temperature, light intensity, and plant water status, 
among others. Sensor-based measurements provide real-time insights into plant re-
sponses to environmental changes, allowing for more nuanced understanding of 
plant–environment interactions [52,53]. 

• Drones and remote sensing: Drones equipped with advanced imaging systems and 
sensors provide a powerful tool for large-scale field phenotyping. They can capture 
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high-resolution, multi-dimensional images of entire fields, enabling the assessment 
of spatial variability in plant traits across large areas. Similarly, remote sensing tech-
nologies allow for large-scale monitoring of crop health, yield, and environmental 
conditions [54,55]. 

• Integration of multi-omics and AI: The integration of multi-omics approaches with 
advanced phenotyping techniques can provide a holistic view of the plant system, 
uncovering the complex interactions and regulatory mechanisms that underlie ob-
servable plant traits. Moreover, AI and machine learning techniques can be leveraged 
to analyze the large and complex datasets generated by these methods, revealing hid-
den patterns and predictive models of plant phenotypes [56–58]. These advance-
ments have the potential to revolutionize plant phenotyping, breaking the existing 
bottleneck and paving the way for more insightful and predictive horticultural re-
search. Through these advancements, we can expect to see significant strides in our 
understanding of plant biology and the development of more productive and resili-
ent crop varieties. 

3. Introduction to Multi-Omics 
3.1. Overview of Genomics, Transcriptomics, Proteomics, and Metabolomics 

The ‘omics’ disciplines represent a comprehensive approach to studying various bi-
ological systems in a holistic and integrative manner. These disciplines, when combined 
under the umbrella of ‘multi-omics’, allow us to understand the complex interplay be-
tween different layers of biological information. Here, we provide an overview of the key 
omics disciplines: genomics, transcriptomics, proteomics, and metabolomics (Table 2). 

Genomics refers to the study of an organism’s entire genome or the complete set of 
DNA, including all its genes. It involves understanding the structure, function, evolution, 
and mapping of genomes. Genomics allows researchers to study complex genetic traits 
and understand how multiple genes can influence these traits. In the context of plant phe-
notyping, genomics can provide insights into the genetic determinants of various plant 
traits and aid in the development of marker-assisted selection strategies [59,60]. Whole-
genome sequencing (WGS) provides an in-depth, comprehensive view of the plant ge-
nome, and can help discover novel genes and regulatory elements that were previously 
uncharacterized. Genotyping-by-sequencing, on the other hand, is a cost-effective method 
for identifying single nucleotide polymorphisms (SNPs) and small insertions and dele-
tions (INDELs) [61–63]. This method is particularly valuable for genetic mapping, marker-
assisted breeding, and population genetic studies. SNPs and other genetic variations are 
the basis of genetic diversity and can influence various traits of interest in horticulture, 
such as fruit size, color, flavor, and resistance to diseases or pests. For example, an SNP in 
a particular gene may cause a change in a protein’s function, leading to a change in a 
plant’s phenotype [64–66]. Overall, genomics, powered by NGS technologies, has opened 
up vast opportunities for understanding the complex genetic architecture of plants and 
accelerating genetic improvement in horticulture [67–69]. 

Transcriptomics (RNA-seq) involves the study of the transcriptome, the complete set 
of RNA transcripts produced by the genome under specific circumstances or in a specific 
cell. Transcriptomics provides insights into gene expression patterns, allowing research-
ers to understand which genes are turned ‘on’ or ‘off’ during different developmental 
stages or under different environmental conditions. This information can reveal how ge-
netic information is translated into functional outcomes, and it can also help identify genes 
that play a critical role in specific plant traits [32,60,70]. For example, in horticultural re-
search, RNA-seq could be used to understand the transcriptomic changes that occur dur-
ing fruit ripening or in response to disease [71–73]. The high-resolution data generated by 
transcriptomics not only provides a snapshot of gene activity at a specific moment, but 
can also be used to understand the dynamic nature of gene expression. Such understand-
ing can lead to the identification of key molecular mechanisms and regulatory networks 
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in plants, which can significantly influence horticultural practices and crop improvement 
strategies. Overall, transcriptomics serves as an essential bridge between the genome and 
the phenotype, contributing significantly to the elucidation of the functional elements of 
the genome and their roles in horticulture [74–76].  

Proteomics studies the entire set of proteins expressed by a genome, which includes 
their interactions, modifications, localization, and functions. By studying the structures, 
functions, and interactions of proteins, proteomics can provide valuable insights into the 
cellular mechanisms underlying various plant traits. Proteomic analyses can also reveal 
post-translational modifications, protein–protein interactions, and the impact of environ-
mental factors on protein function [32,34]. This ‘omics’ approach complements genomics 
and transcriptomics, providing a more direct link to cellular function and phenotype since 
proteins are the primary effectors of cellular processes. In horticulture, proteomics can be 
used to identify key proteins involved in essential biological processes such as photosyn-
thesis, respiration, signaling pathways, and stress responses. For instance, a comparative 
proteomic analysis between disease-resistant and susceptible plant varieties could reveal 
proteins that contribute to disease resistance. Furthermore, protein–protein interaction 
studies can shed light on the complex protein networks that regulate plant development 
and responses to environmental cues. For example, understanding the protein interac-
tions involved in the fruit ripening process could help in the development of strategies to 
enhance fruit quality and shelf life [77–79].  

Metabolomics involves the systematic study of the unique chemical fingerprints that 
specific cellular processes leave behind, i.e., the study of their small-molecule metabolite 
profiles. Metabolomics can provide information about the physiological status of a plant 
and its response to environmental conditions. By comparing the metabolomes of different 
plants or the same plant under different conditions, researchers can identify changes in 
metabolic pathways that may influence specific plant traits [32,80,81]. 

Table 2. Overview of multi-omics techniques. 

Type  
of ‘Omics’ Definition Common Methods Used Applications in Horticulture 

Genomics 
The study of the complete set of 
genes (the genome) in a species 
and their functions [63]. 

Whole-genome sequencing 
(WGS), genotyping by se-
quencing (GBS) [68].  

Pangenome analysis, plant breeding, ge-
netic diversity analysis, disease re-
sistance research [69]. 

Transcriptom-
ics 

The study of the complete set of 
RNA transcripts produced by the 
genome under specific circum-
stances [70].  

RNA sequencing (RNA-seq), 
single-cell RNA sequencing 
(scRNA-seq), microarray 
analysis [71]. 

Understanding plant response to stress, 
gene expression studies, identification 
of key regulatory genes [72]. 

Proteomics 
The study of the complete set of 
proteins as expressions of genes 
and their functions [73].  

Two-dimensional gel elec-
trophoresis, mass spectrome-
try [74]. 

Studying protein interaction networks, 
protein expression analysis, discovering 
disease resistance proteins [75]. 

Metabolomics 
The study of the complete set of 
small-molecule chemicals found 
within a biological sample [76]. 

Gas chromatography–mass 
spectrometry (GC–MS), liq-
uid chromatography–mass 
spectrometry (LC–MS) [77]. 

Profiling of plant-targeted and untar-
geted metabolites, understanding plant 
metabolic pathways, flavor and fra-
grance research [72]. 

Together, these omics disciplines provide a comprehensive view of the biological sys-
tem, from the genetic blueprint (genome) to its functional molecules (transcriptome, pro-
teome, and metabolome). The integration of these layers using a multi-omics approach 
can reveal the complex networks and interactions that shape the observable characteristics 
of a plant, thus providing a more holistic understanding of plant phenotypes at the mo-
lecular level. Furthermore, it can help in identifying the molecular markers associated 
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with desirable traits, which can be used for plant breeding and genetic improvement in 
horticulture. 

3.2. Significance of Integrating Multi-Omics Data in Horticulture 
The integration of multi-omics data is a powerful approach that can enhance our un-

derstanding of plant biology and significantly accelerate progress in horticultural research 
and breeding programs. Here, we outline the significance of integrating multi-omics data 
in horticulture: 
• Comprehensive view of biological systems: A primary advantage of multi-omics in-

tegration is the comprehensive and holistic perspective it provides of biological sys-
tems. By combining genomics, transcriptomics, proteomics, and metabolomics, re-
searchers can explore multiple layers of biological information simultaneously. This 
approach can reveal how genetic variants influence gene expression, protein produc-
tion, and metabolite levels, and consequently, observable plant traits [82–84]. 

• Uncovers complex interactions and regulatory mechanisms: Integration of multi-om-
ics data can uncover the complex interactions and regulatory mechanisms that un-
derlie plant phenotypes. For instance, by correlating genomic data with tran-
scriptomic, proteomic, or metabolomic data, researchers can identify how changes in 
the DNA sequence impact gene expression, protein production, and metabolite lev-
els. This information can illuminate the mechanisms through which genetic varia-
tions contribute to observable traits [84–86].  

• Enhances predictive power: The integration of multi-omics data can enhance the pre-
dictive power of models used to forecast plant traits. By incorporating data from mul-
tiple omics layers, these models can account for the interplay between different bio-
logical processes, leading to more accurate predictions [85,87]. 

• Facilitates precision breeding: Multi-omics integration can facilitate precision breed-
ing by identifying molecular markers associated with desirable plant traits across 
multiple biological layers. This allows breeders to select for these traits with greater 
precision, leading to the development of improved plant varieties [88,89]. 

• Improves understanding of plant–environment interactions: Through the integration 
of multi-omics data, researchers can gain a deeper understanding of how plants in-
teract with their environment. This can reveal how various environmental factors in-
fluence gene expression, protein production, and metabolic pathways, thereby affect-
ing plant growth, development, and response to stress [90,91]. 

• Aids in disease diagnosis and management: By providing a comprehensive view of 
plant biology, multi-omics integration can aid in the diagnosis and management of 
plant diseases. For example, it can help identify molecular markers associated with 
disease resistance, guide the development of disease-resistant plant varieties, and in-
form disease management strategies [78,92]. 

3.3. Exploring Specific Molecular Pathways in Horticulture 
The application of multi-omics and AI technologies in horticulture enables in-depth 

exploration and understanding of complex molecular pathways integral to plant growth, 
disease resistance, and stress responses. 

3.3.1. Plant Growth and Development 
Plant growth and development are orchestrated by a complex network of genes and 

their interactions. Through multi-omics techniques, we can gain a deeper understanding 
of these molecular mechanisms and the key players involved: 
• Genomic insights: Genomics offers a comprehensive view of a plant’s genetic 

makeup, shedding light on crucial genes involved in growth and development. For 
instance, genes in the auxin signaling pathway, a critical regulator of plant cell elon-
gation and organ shape, can be identified and their sequences analyzed. Genomic 



Biology 2023, 12, 1298 10 of 34 
 

 

variations such as single nucleotide polymorphisms (SNPs) or insertions and dele-
tions (INDELs) within these genes can be linked to phenotypic variations, contrib-
uting to our understanding of plant morphology and development [93–95].  

• Transcriptomic profiling: Transcriptomics takes this a step further by studying the 
expression patterns of these genes. It can provide insights into when and where spe-
cific genes are turned on or off during a plant’s life cycle, adding another layer of 
complexity to our understanding of plant development. For example, RNA-seq tech-
nology can be used to monitor gene expression changes in the auxin pathway 
throughout different developmental stages or in response to external stimuli [96–98].  

• Metabolomic analysis: Metabolomics complements these genetic and transcriptional 
studies by investigating the metabolic changes that accompany plant growth and de-
velopment. It can identify and quantify the multitude of metabolites in a plant, re-
vealing the biochemical pathways that are active at various stages of development. 
For instance, metabolomic studies can show how the auxin hormone and other re-
lated metabolites fluctuate during plant development, providing more tangible 
measures of plant physiological changes [99–101].  

• Role of AI and ML: The integration and analysis of this high-dimensional multi-om-
ics data can be challenging. This is where AI and ML come into play. Advanced AI 
and ML techniques can be used to recognize patterns within this complex data, facil-
itating the prediction of gene function or plant phenotypic traits. For instance, AI 
algorithms could predict how changes in the expression of genes in the auxin path-
way could impact plant growth or morphology, which could then be experimentally 
validated [102–104].  

3.3.2. Disease Resistance Pathways 
Plants have evolved a variety of disease resistance pathways to protect themselves 

against a diverse range of pathogens. These pathways are complex and involve many dif-
ferent genes, proteins, and metabolites. Multi-omics approaches provide an invaluable 
toolset for understanding these processes on a molecular level: 
• Genomic studies: One of the key components in disease resistance pathways is re-

sistance (R) genes. Genomics allows us to analyze genetic variations, such as SNPs 
and INDELs, within these R genes, which can provide information about a plant’s 
potential to resist specific diseases [105–107]; 

• Transcriptomic analysis: To understand when and how R genes function in response 
to pathogen attacks, transcriptomics can be employed. For example, RNA-seq analy-
sis can be used to monitor R gene expression levels upon exposure to different path-
ogens. This allows us to observe the activation of the disease resistance pathways and 
to identify the pathogens against which these pathways are effective [108–110]; 

• Proteomic insights: Proteomics can help in understanding the post-transcriptional 
and post-translational modifications that R proteins undergo during pathogen at-
tacks. These modifications can influence the function and activity of R proteins. By 
identifying the modified proteins and their modifications, proteomics can provide 
insights into the mechanisms by which R proteins confer disease resistance [111–113]; 

• Metabolomic studies: Plants respond to pathogen attacks by producing various me-
tabolites that help combat the invaders. Metabolomics can identify and quantify these 
defensive metabolites, such as phytoalexins, which are synthesized in response to 
microbial infection. Metabolomic profiles can provide a snapshot of a plant’s meta-
bolic state under pathogen attack, contributing to our understanding of the biochem-
ical aspects of plant defense mechanisms [114–116]; 

• AI/ML in disease resistance studies: Each ‘omics’ layer adds a piece to the puzzle of 
plant disease resistance. However, integrating and interpreting this vast and complex 
multi-omics data can be challenging. AI/ML models offer powerful tools to decipher 
these complexities, enabling the prediction of disease resistance based on multi-
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omics profiles. For instance, ML algorithms can be trained on genomic, tran-
scriptomic, proteomic, and metabolomic data to predict a plant’s resistance to a spe-
cific disease. These predictions can be tested and validated experimentally, allowing 
for the continuous refinement and improvement of the models [117–119]. 

3.3.3. Stress Response Pathways 
Plants, as sessile organisms, are exposed to a myriad of environmental stresses, in-

cluding drought, salinity, and extreme temperatures. Understanding how plants respond 
to these stresses at a molecular level is crucial for improving crop resilience. Multi-omics 
approaches provide a comprehensive toolset for unraveling these complex stress response 
pathways: 
• Genomic studies: Genomics offers the ability to identify genes implicated in stress 

responses. For instance, several drought, salinity, and temperature-responsive genes 
have been identified in various plant species. These genes often include those encod-
ing transcription factors, which play a pivotal role in regulating the expression of 
other stress-responsive genes. Analyzing the sequence and structural variations 
within these genes can help predict a plant’s potential to withstand different envi-
ronmental stresses [120–122]; 

• Transcriptomic analysis: Transcriptomic studies can track the expression of stress-
responsive genes during exposure to different stress conditions. For instance, RNA-
seq analysis can reveal up-regulation or down-regulation of specific genes in re-
sponse to drought, salinity, or temperature stress. This provides a dynamic view of 
how a plant’s transcriptome changes in response to environmental stressors [123–
125]; 

• Proteomic insights: Proteomics complements these genomic and transcriptomic stud-
ies by providing insights into stress-responsive proteins. For instance, certain pro-
teins might be upregulated during stress conditions to protect plant cells from dam-
age. Proteomics can identify these proteins and monitor their abundance during dif-
ferent stress conditions, thereby providing insights into a plant’s proteomic response 
to stress [68,126,127]; 

• Metabolomic studies: Metabolomics adds another layer of understanding by investi-
gating the metabolic changes under stress conditions. Certain metabolites may accu-
mulate in response to stress as part of a plant’s defense mechanism. These could in-
clude osmolytes for drought and salinity stress or heat-shock proteins for thermal 
stress. Metabolomic profiling can reveal these stress-induced metabolic changes, 
providing a holistic view of a plant’s biochemical response to stress [101,128,129]; 

• Role of AI/ML in studying stress responses: The integration of multi-omics data gives 
a comprehensive picture of a plant’s response to stress. However, this data is high-
dimensional and complex, presenting a challenge for traditional data analysis meth-
ods. AI/ML techniques offer robust tools for managing this complexity. They can 
identify key molecular players in stress responses by detecting patterns across the 
multi-omics datasets. Furthermore, AI/ML models can be trained to predict a plant’s 
stress response based on its multi-omics profile [119,130,131]; 
Through the integration of multi-omics data and AI/ML analyses, we can achieve a 

deeper understanding of plant stress responses. This knowledge is vital for breeding more 
resilient crops and for developing more effective strategies for stress management in hor-
ticulture. 

4. Introduction to Artificial Intelligence and Machine Learning 
4.1. Overview of AI and Machine Learning 

Artificial intelligence (AI) and machine learning (ML) are interdisciplinary fields of 
computer science that have seen tremendous growth and interest in recent years, offering 
a myriad of applications across various domains, including horticulture. AI refers to the 
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simulation of human intelligence processes by machines, especially computer systems. 
These processes include learning (the acquisition of information and rules for using the 
information), reasoning (using the rules to reach approximate or definite conclusions), 
and self-correction. AI is a broad field that encompasses many subdomains, one of which 
is machine learning [132,133]. AI systems can be categorized into two types:  
• Narrow AI, which is designed to perform a narrow task (e.g., facial recognition or 

internet searches) and is what we currently have, and  
• General AI, which refers to systems that possess the ability to perform any intellec-

tual task that a human being can do; this are still a largely theoretical concept 
[134,135]. 
Machine learning is a subfield of AI that focuses on the development of algorithms 

and statistical models that enable computers to perform tasks without explicit instruc-
tions, but rather through patterns and inference. In other words, it’s a type of AI that al-
lows a system to learn from data [136]. ML techniques differ from those of classical pro-
gramming, which take input data and create a code to produce output data, and instead 
provide both inputs and outputs to generate algorithms (Figure 2). There are four main 
types of machine learning (Figure 3): 
• Supervised learning: Involves learning a function that maps an input to an output 

based on example input–output pairs. It infers a function from labeled training data 
consisting of a set of training examples [137]; 

• Unsupervised learning: A type of machine learning that looks for previously unde-
tected patterns in a data set with no pre-existing labels and with a minimum of hu-
man supervision [138]; 

• Semi-supervised learning: Combines supervised and unsupervised learning tech-
niques; 

• Reinforcement learning: An area of machine learning concerned with how software 
agents ought to take actions in an environment in order to maximize some notion of 
cumulative reward [139]. 

 
Figure 2. Machine learning approach to solving an object detection problem. 

AI and ML have been increasingly used in horticultural research due to their ability 
to deal with complex data, extract patterns, and make predictions. They have found ap-
plications in a variety of areas, including plant phenotyping, disease detection, yield pre-
diction, and stress identification, among others. In combination with multi-omics data, AI 
and machine learning can offer profound insights into plant biology, thus revolutionizing 
horticultural research and practice [28,140]. 
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Figure 3. Machine learning approaches: supervised, unsupervised, and semi-supervised. 

4.2. Importance of AI and Machine Learning in Data Analysis 
The advent of AI and machine learning (ML) has significantly transformed the meth-

ods of analyzing data, particularly in the context of big data that is characteristic of many 
fields, including horticulture. Here, we outline the importance of AI and ML in data anal-
ysis: 
• Handling high-dimensional data: One of the major challenges in modern horticulture 

research is dealing with high-dimensional data, often generated by high-throughput 
phenotyping and multi-omics technologies. AI and ML algorithms are particularly 
well-suited to handle such data, as they can process vast amounts of information 
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efficiently, uncovering complex patterns and relationships that would be otherwise 
difficult to discern [141,142]. 

• Pattern recognition and feature extraction: ML algorithms excel at recognizing pat-
terns within data. This is especially useful when dealing with complex biological 
data, where patterns may not be immediately obvious. ML can also be used for fea-
ture extraction, identifying the most informative variables within a dataset, which 
can greatly simplify data analysis and improve the accuracy of predictive models 
[98–100]. 

• Predictive modeling: AI and ML are powerful tools for predictive modeling. By learn-
ing from existing data, these algorithms can make accurate predictions about unseen 
data. This is especially important in horticulture, where predictive models can be 
used for various purposes, such as forecasting yield, predicting disease, or estimating 
the impact of environmental changes on plant growth and development [143–147]. 

• Dealing with noisy data: Real-world data often contains noise, which can complicate 
analysis and lead to erroneous conclusions. ML algorithms can effectively handle 
noisy data, extracting meaningful patterns while minimizing the impact of noise. 
This is particularly important in horticulture research, where data collected from 
field experiments can be influenced by a range of uncontrollable factors [148,149]. 

• Automating data analysis: AI and ML can automate many aspects of data analysis, 
making the process more efficient and less prone to human error. This can be espe-
cially beneficial when dealing with large datasets, where manual analysis would be 
time-consuming and impractical [150]. 

• Uncovering complex interactions: Biological data is often characterized by complex 
interactions and non-linear relationships. AI and ML algorithms, especially those 
based on deep learning, can model these complex interactions, providing a more ac-
curate and holistic representation of biological systems [151,152]. 

• Integrating diverse data types: AI and ML provide a framework for integrating di-
verse types of data, such as genomic, transcriptomic, proteomic, metabolomic, and 
phenotypic data. This can facilitate a more comprehensive analysis and enable the 
extraction of more meaningful insights from the data [153,154]. 
The above techniques play a crucial role in modern data analysis, providing the tools 

necessary to extract meaningful insights from complex and high-dimensional data. As 
such, they have become an integral part of horticultural research, offering the potential to 
accelerate discoveries and improve our understanding of plant biology. 

4.3. Potential of AI and Machine Learning in Horticulture Research 
Artificial intelligence (AI) and machine learning (ML) have shown immense potential 

to transform horticulture research (Table 3). Here, we discuss some of the potential appli-
cations and implications of AI and ML in this field: 
• High-throughput phenotyping: AI and ML are particularly promising for high-

throughput phenotyping, helping to accurately analyze large volumes of data col-
lected through imaging and sensor-based technologies. Automated image analysis, 
enabled by ML, can identify and quantify plant traits from these images, facilitating 
more precise and objective phenotypic measurements [155,156]; 

• Disease detection and diagnosis: AI and ML can aid in early disease detection and 
diagnosis by identifying patterns and anomalies in plant images or sensor data. This 
could help in monitoring plant health, predicting disease, and informing targeted 
interventions, thus minimizing losses due to diseases [157,158]; 

• Stress identification and quantification: ML models can help identify and quantify 
various biotic and abiotic stress factors, such as pests, diseases, drought, or nutrient 
deficiency, based on plant images, sensor data, or multi-omics data. This can contrib-
ute to a better understanding of plant responses to stress and the development of 
more resilient plant varieties [159,160]; 
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• Yield prediction: AI and ML models can predict crop yields based on variables such 
as weather data, soil properties, and plant phenotypic data. Accurate yield prediction 
can assist in strategic decision-making and planning for growers and agricultural 
stakeholders [161,162]; 

• Genomic selection and breeding: AI and ML can assist in genomic selection and 
breeding by identifying genomic markers associated with desirable traits. This can 
accelerate the breeding process, enabling the development of improved plant varie-
ties in shorter time frames [163,164]; 

• Integration with multi-omics data: AI and ML can be used to integrate and analyze 
multi-omics data, uncovering complex interactions and regulatory mechanisms that 
underlie plant traits. This can lead to a more comprehensive understanding of plant 
biology, informing both basic research and practical applications [57,165]; 

• Environmental monitoring and crop management: ML models can analyze data from 
various environmental sensors to monitor crop environments in real time and inform 
precision agriculture practices. This can help optimize resource use and maximize 
crop productivity and quality [19,20,166]. 

Table 3. AI and ML techniques used in horticulture. 

AI/ML Tech-
nique Description Examples of Use in Horticulture 

Supervised 
Learning 

This is a type of machine learning where an AI is 
trained using labeled data. The AI then uses this 
training to predict the labels of new, unseen data 
[94].  

Plant disease identification from images [122], 
yield prediction [116], fruit size and quality pre-
diction [123], and weeding [124]. Estimation of 
microclimatic parameters in greenhouse cultiva-
tion [125].  

Unsupervised 
Learning 

This involves training an AI using data that has 
not been labeled. The AI identifies patterns and 
structures in the data itself [94]. 

Clustering of plant genotypes or phenotypes 
[126], identifying patterns in multi-omics data 
[127].  

Reinforcement 
Learning 

This is a type of machine learning where an AI 
learns to make decisions by performing actions 
and receiving feedback in the form of rewards or 
punishments [95].  

Optimization of microclimatic conditions, such as 
lighting and irrigation and regulating the level of 
humidity in greenhouse crops [128,129].  

Deep Learning 

This is a subset of machine learning that uses artifi-
cial neural networks with many layers (hence the 
term “deep”). Deep learning can model complex, 
non-linear relationships [130].  

Plant stress detection from hyperspectral imaging 
data [131], automated plant phenotyping from 
image data, disease prediction from multi-omics 
data [26].  

Convolutional 
Neural Net-
works (CNNs) 

These are deep learning models that are especially 
good at processing grid-like data, such as images 
[132]. 

Leaf disease detection from images, plant species 
identification from leaf images [133]. Detection of 
surface defects and early stages of fruit pathogen 
infection based on images [134].  

In conclusion, AI and ML hold significant potential to revolutionize horticulture re-
search, contributing to advancements in plant phenotyping, disease diagnosis, stress iden-
tification, yield prediction, genomic selection, and precision agriculture. As these technol-
ogies continue to evolve, they are likely to provide increasingly powerful tools for ad-
dressing the complex challenges of modern horticulture. 

4.4. A Machine Learning-Based Approach Using Multi-Omics Data: Preliminary Case Study 
Multi-omics datasets are large and complex datasets which are generated from high-

throughput technologies. Many integrated approaches are being sought out to aid in their 
analysis and visualization. Machine learning has been extensively used to analyze and 
integrate different types of data due to the increased accessibility of high computing 
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power. These integrative approaches are continuously evolving to provide accurate in-
sights from the data that is received through experimentation on various biological sys-
tems. This chapter describes the steps required for the ML–multi-omics integration meth-
ods that are applied to biological datasets for their analysis. We present the recommended 
algorithms used for integration and data analysis for supervised or unsupervised ML 
models. 

If the data can be concatenated at an early stage: 
• Unsupervised ML: Check if the multi-omics dataset is overlapping. If there is a partial 

overlap, MOFA2 (multi-omics factor analysis) [167] can be used. If the overlap is com-
plete, check if there is a large dataset after integration. If yes, moCluster [168] and 
iClusterBayes [169] can be used; if no, iCluster [170] can be used. Next, check if the 
dataset has different distribution; if yes, JIVE (Joint and Individual Variation Ex-
plained) [171] and the JBF (joint Bayes factor) [172] can be used; if the dataset has 
similar distribution, NMF (non-negative matrix factorization) random forests 
(sklearn.decomposition.NMF) can be used. 

• Supervised ML: Check if a large dataset is produced after integration. If yes, either 
ensemble methods such as the LASSO (Least Absolute Shrinkage and Selection Op-
erator) [173] can be used. If we obtain a reduced dataset, it can be further solved using 
tools such as decision trees, the Naive Bayes model, SVMs (support vector machines), 
KNNs (k-nearest machines) [174], K-Star [175], boosted regression trees [176], SVR 
(support vector regression), ANNs (artificial neural networks), and DNNs (deep neu-
ral networks). 
If the data can be concatenated at a later stage: 

• Unsupervised ML: Tools such as FCA (formal concept analysis) consensus clustering 
[177], BCC (Bayesian consensus clustering) [178], and SNF (similarity network fu-
sion) [179] can be used; 

• Supervised ML: Tools such as hierarchical classifiers [180], ensemble-based classifiers 
(XGBoost and KNN), and autoencoder-based classifiers can be used. 
If the dataset can be integrated as a transformation: 

• Unsupervised: Check if the multi-omics datasets are overlapping. If the overlap is 
partial, NEMO (neighborhood-based multi-omics clustering) [181] can be used. If 
overlap is complete, Meta-SVM [182] can be used. 

• Supervised: If it is a kernel-based transformation, tools such as SDP-SVM (semi-def-
inite programming) [183], the RVM (Relevance Vector Machine) [184], and the Ada-
Boost RVM can be used. If it is a graph-based transformation, tools such as SSL (semi-
supervised learning) [185], graph sharpening [186], and Bayesian networks, can be 
used. 
Most ML workflows can be implemented on a standard Unix workstation in standard 

configuration. It can also be equipped with a graphics processing unit (GPU) to train ML 
models. The exact specifications of the machine would vary depending on the size of the 
dataset and model architecture. In addition to a CUDA-capable GPU and its suitable driv-
ers, CUDA (https://developer.nvidia.com/cuda-toolkit; accessed on 14 September 2023) is 
an underlying parallel computing platform, which must be separately installed for train-
ing ML models. Additionally, multiple ML frameworks are available with active develop-
ment and extensive community support, and are implemented in the Python program-
ming language: 
• Scikit-Learn: It is designed to work with Python’s NumPy and SciPy numerical and 

scientific libraries, and it includes support vector machines, random forests, gradient 
boosting, k-means, and DBSCAN, among other classification, regression, and clus-
tering algorithms. To include Scikit-learn, import sklearn: 

sklearn.cluster  # All inbuilt clustering algorithms and functions are here 
sklearn.datasets  # All inbuilt datasets are here 
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sklearn.linear_model  # All inbuilt linear models and functions are here 
sklearn.naive_bayes  # To use the Naive Bayes model 
sklearn.neighbors  # To use the nearest neighbors model 
sklearn.neural_network  # To use neural network models 
sklearn.svm  # To use the support vector machine model 
sklearn.tree  # To use the decision tree model 
sklearn.preprocessing  # To use preprocessing and normalization techniques 
sklearn.ensemble  # To use ensemble methods 
• TensorFlow. It is designed to operate with tf.Tensor objects, which are 

multidimensional arrays or tensors, and makes ML faster and easier by utilizing Py-
thon for numerical calculation and data flow. To include TensorFlow, import tensor-
flow as tf: 

tf.transpose(data)  # Transpose given data elements 
tf.concat([data_1, data_2, data_3], axis = value) # Concatenate data elements 
tf.Variable([0.0, 0.0, 0.0])  # To store models 
tf.keras  # To bring the Keras functionalities 
tf.examples.tutorials.mnist.input_data  # To use the MNIST dataset 
• Pytorch: It is production ready, with cloud support, a robust ecosystem, and dis-

persed training. To include Pytorch, import torch: 
torch.Tensor([value])  # Define a tensor 
torch.randn(value_1, value_2. . .)  # Define a matrix with random values 
torch.autograd  # For automatic differentiation 
torch.optim  # Implement optimization algorithms 
torch.nn  # Neural network layer (sequential, linear, etc.) 

It is generally recommended that all the required packages be installed in a virtual 
environment. This can be easily managed by any environment manager, such as Conda 
(https://docs.conda.io/en/latest/; accessed on 14 September 2023). 

5. Current Applications of Multi-Omics and AI in Plant Phenotyping 
5.1. Detailed Review of Existing Studies Employing These Techniques 

In recent years, the integration of multi-omics data and AI/ML has gained momen-
tum in plant phenotyping. Many studies have successfully employed these techniques to 
understand plant biology more comprehensively, enhance predictive modeling, and im-
prove breeding strategies. Below, we review some of these key studies: 
• Genomic selection and phenotypic prediction: Several studies have employed AI and 

ML techniques alongside genomics data for genomic selection and prediction of com-
plex phenotypic traits. Montesinos-Lopez et al. (2018) [187] developed a deep learn-
ing algorithm for genomic-enabled prediction of complex traits in maize, wheat, and 
other crops. Their method significantly outperformed traditional genomic selection 
methods, demonstrating the power of ML in this context. 

• High-throughput phenotyping: High-throughput phenotyping platforms generate 
vast amounts of data that can be analyzed using ML algorithms. Pound et al. (2017) 
[188] developed an ML-based root phenotyping system called “Deep Root”. This sys-
tem uses convolutional neural networks (CNNs) to analyze images from X-ray com-
puted tomography scans of plant roots, accurately quantifying root architecture 
traits. 

• Disease detection: AI and ML, coupled with image analysis, have shown great poten-
tial in early detection and diagnosis of plant diseases. Barbedo (2018) [189] success-
fully employed deep learning models to identify plant diseases based on leaf images. 
This approach allows for the early detection of diseases, facilitating rapid and tar-
geted responses to mitigate damage. 
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• Integration of multi-omics data: The integration of multi-omics data using AI and ML 
is an emerging area of research. Argueso et al. (2019) [190] utilized AI and ML to 
integrate genomic, transcriptomic, and epigenomic data in Arabidopsis thaliana. Their 
integrative approach revealed complex relationships between these different types of 
data and provided insights into the mechanisms underlying plant stress responses. 

• Stress identification: AI and ML have also been used for the identification and quan-
tification of plant stress. Singh et al. (2018) [191] applied ML algorithms to hyperspec-
tral images of plants for the identification and classification of various biotic and abi-
otic stress conditions. 
These studies collectively demonstrate the potential of integrating multi-omics data 

and AI in plant phenotyping. As our understanding of these tools deepens and technology 
continues to advance, we anticipate that their application will become increasingly com-
monplace and powerful, driving forward our understanding of plant biology and improv-
ing horticultural practices. 

5.2. Success Stories and Limitations Encountered 
While the integration of multi-omics data and AI/ML techniques in plant phenotyp-

ing has shown promising results, it has also encountered several limitations and chal-
lenges. In this section, we will present some of the success stories that have marked this 
field, such as: 
• Predicting yield and quality traits: A significant success story involves using AI and 

ML for predicting yield and quality traits in crops. Machine learning models trained 
on genomic and phenotypic data have been successful in predicting complex traits in 
several crops, enhancing selective breeding programs. For example, a study by Zhou 
et al. (2021) [192] used AI models to accurately predict rice yield and quality traits, 
enabling faster and more precise selection in rice breeding programs; 

• Disease identification and prediction: AI and ML have been successfully used for 
early disease detection and prediction in plants. Ferentinos (2018) [193] developed a 
deep learning model that accurately identified and classified plant diseases based on 
leaf images. This model facilitated early intervention, minimizing crop loss due to 
diseases. 
Despite these successes, several limitations and challenges have been encountered in 

the integration of multi-omics data and AI/ML in plant phenotyping, such as: 
• Data quantity and quality: A major challenge in the application of AI/ML techniques 

in plant phenotyping is the requirement for large quantities of high-quality data. The 
predictive performance of AI and ML models generally improves with larger training 
datasets. However, collecting large quantities of high-quality phenotypic and multi-
omics data can be time-consuming and costly [194,195]; 

• Data integration: Integrating data from different omics layers is a complex task due 
to the differences in data types, scales, and structures. Furthermore, the biological 
interpretation of integrated multi-omics data can be challenging due to the complex 
and often non-linear relationships between different biological layers [166,196]; 

• Interpretability model: While AI and ML models can make accurate predictions, they 
are often seen as “black boxes” due to their complexity, making it difficult to interpret 
their predictions. This lack of interpretability can be a significant limitation, particu-
larly in a scientific context where understanding the underlying biological mecha-
nisms is crucial [197,198]; 

• Overfitting: AI and ML models, particularly more complex models, such as deep 
learning models, can be prone to overfitting, where they perform well on the training 
data but poorly on unseen data. This can limit the generalizability and predictive 
accuracy of these models [199,200]. 
While there have been notable success stories in the application of multi-omics data 

and AI/ML in plant phenotyping, several limitations and challenges need to be addressed 
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to fully realize their potential. Continued research and development in these areas, along 
with the refinement of data collection and analysis techniques, are crucial for the future 
advancement of this field. 

6. Integrated Multi-Omics and AI Framework 
6.1. Description of the Proposed Framework 

The proposed framework aims to integrate multi-omics data and artificial intelli-
gence (AI)/machine learning (ML) techniques in order to gain deeper insights into plant 
phenotypes and to enhance predictive modeling capabilities in horticulture research. 
Here, we describe the key components and steps involved in this integrated framework: 
1. Data collection: The framework begins with comprehensive data collection, encom-

passing multiple ‘omics’ layers—genomics, transcriptomics, proteomics, and metab-
olomics. Simultaneously, phenotypic data is collected using high-throughput pheno-
typing techniques. This may involve, for example, imaging technologies, environ-
mental sensors, or manual trait measurements [201,202]; 

2. Data pre-processing and normalization: The collected data is pre-processed and nor-
malized to ensure comparability and to minimize technical biases. This step may in-
volve quality control, normalization, feature extraction, and other data transfor-
mation procedures [48,203]; 

3. Data integration: After pre-processing, data from different ‘omics’ layers is inte-
grated. This integration can be done at various levels, for example, at the level of 
features (genes, transcripts, proteins, metabolites), samples, or phenotypes. Various 
data integration techniques, such as multivariate statistical methods, data fusion 
techniques, or network-based methods, can be used depending on the specific re-
search question and data characteristics [201,204,205]; 

4. Machine learning modeling: Once the data is integrated, ML algorithms are em-
ployed to build predictive models or to extract meaningful patterns from the data. 
This may involve supervised learning methods for prediction tasks, unsupervised 
learning methods for data exploration, or reinforcement learning methods for deci-
sion-making tasks [201,206,207]; 

5. Model evaluation and interpretation: After the ML models are built, they are evalu-
ated using suitable metrics and validation strategies. The interpretation of model re-
sults is also a crucial step, allowing for biological insights to be derived from the 
model’s predictions or patterns [208,209]; 

6. Application to horticulture research and practice: The final step involves applying 
the insights derived from the integrated multi-omics and AI/ML framework to horti-
culture research and practice. This could involve, for example, informing breeding 
strategies, enhancing disease detection and intervention methods, improving re-
source management, or predicting crop yields and quality [210,211]. 

6.2. How AI and ML Can Help in Integrating and Analyzing of Multi-Omics Data 
Artificial intelligence (AI) and machine learning (ML) technologies offer transforma-

tive potential for the integration and analysis of multi-omics data. Below are several ways 
these technologies can facilitate this process: 
1. Data integration: One of the major challenges in multi-omics research is the integra-

tion of diverse types of data, ranging from genomics to metabolomics. These data 
types often differ significantly in their structure, complexity, and size, making their 
integration a non-trivial task. AI and ML algorithms, such as matrix factorization, 
deep learning, and network-based methods, can be used to integrate these heteroge-
neous data types in a coherent way, enabling a more comprehensive view of biolog-
ical systems [212–214]; 

2. Feature selection and extraction: AI and ML methods can help identify the most rel-
evant features across different ‘omics’ layers. Techniques such as the LASSO, ridge 
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regression, random forests, or deep learning can be employed to perform feature se-
lection or extraction, helping to reduce dimensionality and to identify key genes, pro-
teins, metabolites, or other features that are predictive of the phenotype of interest 
[215–217]; 

3. Pattern recognition: AI and ML excel in recognizing complex patterns in large and 
high-dimensional data, a task that is common in multi-omics research. Unsupervised 
learning methods, such as clustering, principal component analysis (PCA), or deep 
learning-based methods, can be used to detect patterns, correlations, or latent struc-
tures in multi-omics data, providing insights into the underlying biological mecha-
nisms [134,218,219]; 

4. Predictive modeling: AI and ML techniques are powerful tools for building predic-
tive models based on multi-omics data. Given the high-dimensional nature of multi-
omics data, these techniques can be particularly useful for this task. For example, 
support vector machines, neural networks, or gradient boosting models can be used 
to predict phenotypes based on multi-omics data [146,220,221]; 

5. Network construction and analysis: AI and ML can also assist in the construction and 
analysis of biological networks based on multi-omics data. For instance, network-
based methods can be used to infer gene regulatory networks, protein–protein inter-
action networks, or metabolic networks. These networks can provide valuable in-
sights into the interactions and regulatory relationships between different biological 
entities [222–224]. 
In conclusion, AI and ML provide valuable tools for the integration and analysis of 

multi-omics data. By enabling data integration, feature selection, pattern recognition, pre-
dictive modeling, and network analysis, these technologies can greatly enhance our ability 
to understand and interpret multi-omics data, thereby contributing to advances in horti-
cultural research. 

6.3. Expected Benefits of the Proposed Framework 
The integrated multi-omics and AI/ML framework offers significant benefits and is 

poised to significantly advance our proposed understanding and practices in horticultural 
research. Here are some of the anticipated benefits: 
1. Enhanced understanding of plant biology: The framework’s ability to incorporate 

multi-omics data will allow for a more comprehensive understanding of plant biol-
ogy, spanning from genes to metabolites. This in-depth view can reveal new insights 
into the complex mechanisms that govern plant growth, development, and responses 
to environmental conditions [130,225]; 

2. Improved predictive modeling: By leveraging the power of AI and ML, the proposed 
framework will enhance our capacity for predictive modeling. These advanced algo-
rithms can manage the complexity and high dimensionality of multi-omics data, en-
abling more accurate predictions of plant traits and behaviors [226,227]; 

3. Accelerated breeding programs: The integration of multi-omics data and AI can ex-
pedite plant breeding programs. By accurately predicting desirable traits, breeders 
can make more informed selections earlier in the breeding cycle, thus reducing the 
time and resources required for breeding new varieties [228,229]; 

4. Optimized resource management: By predicting plant responses to different environ-
mental conditions and management practices, the framework can guide decisions 
about resource allocation. This can lead to more sustainable and efficient use of re-
sources such as water, fertilizers, and energy [230,231]; 

5. Enhanced disease diagnosis and intervention: The proposed framework can also im-
prove disease detection and intervention strategies. AI and ML models can be trained 
to recognize early signs of disease based on multi-omics data, enabling early and tar-
geted interventions that minimize crop damage [232]; 
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6. Facilitating personalized horticulture: In the long term, the proposed framework 
could contribute to the development of ‘personalized horticulture’, where manage-
ment strategies are tailored to the specific genetic makeup and environmental condi-
tions of each plant or crop. This could lead to significant improvements in crop 
productivity, quality, and sustainability [233,234]. 

7. Challenges and Future Perspectives 
7.1. Technical and Non-Technical Challenges in Implementing the Framework 

The integrated multi-omics and AI/ML framework holds significant potential for ad-
vancing horticultural research and practice. However, its implementation also poses sev-
eral technical and non-technical challenges that must be acknowledged and addressed 
(Table 4). 
1. Technical Challenges: 
• Data acquisition and quality control: Collecting comprehensive multi-omics data is a 

complex and time-consuming task that requires specialized techniques and equip-
ment. Ensuring the quality and consistency of this data across different ‘omics’ layers 
and samples is also a significant challenge [235,236]; 

• Data integration: Integrating data from different ‘omics’ layers can be complex due 
to the differences in data types, scales, and structures. This task requires sophisticated 
methods and a deep understanding of both the data and the biological systems being 
studied [237,238]; 

• Algorithm selection and implementation: Choosing and implementing the appropri-
ate AI and ML algorithms for a given task can be challenging, particularly given the 
rapid pace of advancement in these fields. The chosen algorithms must be carefully 
validated and their assumptions and limitations understood [239,240]; 

• Model interpretability: AI and ML models, particularly complex models, such as neu-
ral networks, can be difficult to interpret. This ‘black box’ nature can be a significant 
challenge in a scientific context where understanding the underlying mechanisms is 
crucial [241,242]. 

2. Non-Technical Challenges: 
• Ethical and legal considerations: The use of AI and ML in horticulture, like in many 

other fields, raises several ethical and legal considerations. These include issues re-
lated to data privacy and ownership, the transparency and fairness of AI/ML algo-
rithms, and the potential impacts on labor markets [243,244]; 

• Education and training: Implementing this framework requires a high level of exper-
tise in various fields, including genomics, bioinformatics, AI and ML, and horticul-
ture. Providing the necessary education and training can be a significant challenge 
[245,246]; 

• Collaboration and communication: The interdisciplinary nature of this framework 
necessitates close collaboration and effective communication between experts in dif-
ferent fields. Overcoming disciplinary boundaries and fostering a collaborative cul-
ture can be a challenge [247,248]. 
Future research should focus on addressing these challenges and exploring potential 

solutions. By doing so, it will be possible to realize the full potential of the proposed frame-
work and to drive significant advancements in horticultural research and practice. 
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Table 4. AI and ML techniques used in horticulture. 

Type of Chal-
lenge Description of Challenge Potential Solutions 

Technical Managing the volume and complexity of multi-om-
ics data [210].  

Using advanced computational infrastructure, ap-
plication of efficient data compression, normaliza-
tion, and storage techniques [212].  

Technical Developing robust and transparent AI/ML models 
for complex biological data [214] 

Application of interpretable machine learning algo-
rithms, use of proper validation techniques, collab-
oration between data scientists and biologists [209]. 

Non-Technical Need for multidisciplinary expertise (biology, bio-
informatics, data science) in a single project [219]  

Formation of multidisciplinary teams, collaboration 
between research institutions and universities, 
training programs for researchers [218] 

Non-Technical 
Ethical, legal, and social implications of using AI 
and multi-omics data in horticulture [216] 

Development and enforcement of ethical guide-
lines, legislation, informed consent processes for 
data use, public engagement, and education [217].  

7.2. Potential Solutions to These Challenges 
Addressing the challenges associated with the implementation of the proposed 

multi-omics and AI/ML framework will require concerted efforts across several dimen-
sions. Here are some potential solutions. 
1. Solutions to Technical Challenges: 
• Standardization of data acquisition and quality control: Standardizing protocols for 

data acquisition and quality control can help ensure the comparability and con-
sistency of multi-omics data. The development and adoption of universal standards 
and best practices across laboratories can be a key part of this process [249,250]; 

• Development of sophisticated integration techniques: Continued research and devel-
opment in the field of data integration can help overcome the challenges associated 
with integrating diverse ‘omics’ data. This includes not only statistical methods but 
also computational tools that can handle the complexity and size of multi-omics data 
[57,251]; 

• Transparent and reproducible machine learning practices: Promoting transparency 
and reproducibility in AI and ML can help address the challenge of algorithm selec-
tion and implementation. This involves clearly documenting the choices made at 
each step of the ML process, making code and data available for others to reproduce 
results, and thoroughly validating and benchmarking algorithms [252,253]; 

• Explainable AI: To tackle the ‘black box’ issue, efforts should be directed towards the 
development and application of explainable AI techniques. These methods aim to 
make the decision-making process of AI and ML models more transparent and inter-
pretable [254,255]. 

2. Solutions to Non-Technical Challenges 
• Ethical and legal guidelines: To address the ethical and legal considerations associ-

ated with AI and ML, comprehensive guidelines and regulations should be devel-
oped and enforced. This should involve a wide range of stakeholders, including re-
searchers, ethicists, legal experts, and policymakers [256,257]; 

• Interdisciplinary education and training: The challenge of education and training can 
be addressed by promoting interdisciplinary education programs that provide a 
comprehensive understanding of both the biological and computational aspects of 
this field. This also includes continued professional development opportunities for 
researchers in this field [258,259]; 

• Promoting collaboration and communication: Encouraging a culture of collaboration 
and communication can help overcome disciplinary boundaries. This can be 
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facilitated by interdisciplinary conferences, workshops, and research projects, as well 
as tools and platforms that facilitate collaboration and data sharing [258,260]. 
By implementing these solutions, we can mitigate the challenges associated with the 

proposed framework, paving the way for the successful integration of multi-omics and 
AI/ML in horticultural research and practice. 

8. Future Prospects of Integrating Multi-Omics and AI in Plant Phenotyping 
The integration of multi-omics and AI in plant phenotyping promises a transforma-

tive future for horticultural research and practice. Here are some of the exciting prospects: 
1. Precision horticulture: As we advance our ability to analyze and interpret complex 

multi-omics data using AI, precision horticulture becomes a promising reality. In this 
scenario, every decision, from planting to harvesting, can be tailored to the specific 
genetic makeup and environmental conditions of each plant, optimizing productiv-
ity, sustainability, and quality [55,261]; 

2. Predictive breeding: The combination of multi-omics and AI can vastly improve plant 
breeding processes. Breeders will be able to make informed decisions based on pre-
dictive models that take into account a comprehensive range of genetic and pheno-
typic data, significantly accelerating the breeding process and enhancing the result-
ing crop varieties [26,262]; 

3. Enhanced disease and stress response management: By integrating multi-omics and 
AI, we can achieve an unprecedented understanding of plant disease and stress re-
sponses. This could lead to the development of sophisticated early warning systems 
for disease and stress detection, as well as novel strategies for managing these chal-
lenges [26,261]; 

4. Sustainable crop management: With the combined power of multi-omics and AI, we 
can build robust models that account for the complex interactions between plants, 
soils, and climates. These models can inform sustainable management practices, lead-
ing to reductions in resource use and environmental impact [55,255]; 

5. Exploration of plant biodiversity: The proposed integrated framework allows for a 
deeper exploration of plant biodiversity. This can enhance our understanding of the 
rich variety of plant species and their adaptations, potentially uncovering new re-
sources for breeding and conservation efforts [33,263]; 

6. Universal access to horticulture research: With the development of user-friendly AI 
tools and platforms for multi-omics data analysis, there’s potential for dissemination 
of horticulture research. This means that advanced plant phenotyping methods could 
become accessible to a broader range of researchers and practitioners, facilitating 
global advancements in this field [33,264]. 

9. Conclusions 
The traditional methods of plant phenotyping, while foundational, have their limita-

tions, particularly in their inability to capture the intricacy of plant biology. The emer-
gence of genomics, transcriptomics, proteomics, and metabolomics, collectively known as 
multi-omics, enables a more comprehensive analysis. When coupled with the power of AI 
and machine learning, we have a potential toolset that can navigate the complexity and 
volume of multi-omics data effectively, providing meaningful interpretations and predic-
tions that can revolutionize horticultural research and applications. However, the imple-
mentation of this integrated framework is not without challenges, both technical and non-
technical. From data acquisition and integration to the application of suitable AI algo-
rithms and their interpretation, there are still many technical obstacles around. In addi-
tion, ethical, legal, and educational considerations must be taken into account. We dis-
cussed potential solutions to these challenges, emphasizing the importance of standardi-
zation, the development of explainable AI techniques, the creation of comprehensive 
guidelines for ethical and legal considerations, interdisciplinary education, and fostering 
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a culture of collaboration and communication. Looking ahead, the prospects of this inte-
gration are inspiring, encompassing precision horticulture, predictive breeding, improved 
disease and stress response management, sustainable crop management, exploration of 
plant biodiversity, and commercialization of horticulture research.  
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